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Abstract. We discuss directed walk models of random copolymers, either adsorbed at a surface or localized
at an interface between two immiscible liquids. We consider the response to an applied force which can cause
desorption or delocalization into a bulk phase, and calculate the critical force as a function of temperature.
The randomness is quenched and, even for directed models, we cannot usually treat the quenched system
analytically so we resort to an approximation in which the quenched average is approximated by an
annealed average with a side condition which ensures the correct proportion of the types of comonomers.
We argue that this approach gives the exact result for the quenched system in some cases and a bound in
others.

PACS. 36.20.Ey Conformation (statistics and dynamics) – 05.70.Jk Critical point phenomena
in thermodynamics – 64.60.-i General studies of phase transitions

1 Introduction

Experimental techniques such as atomic force microscopy
and optical tweezers have made it possible to microma-
nipulate single polymer molecules and to measure their
response to an applied force (see for instance [1] and [2]
and references therein). For instance, it is in principle pos-
sible to pull an adsorbed polymer off a surface and mea-
sure the free energy change.

There is a large volume of literature on the statistical
mechanics of polymer adsorption (see [3] and [4] for re-
views) and directed walk models have proved very useful
in understanding the adsorption transition [5–8]. In a simi-
lar way, there has been considerable interest in localization
of a random copolymer at an interface between two immis-
cible liquids ([9–11] and references therein), and directed
walk models have contributed to our understanding of this
phenomenon [7,12,13]. Recently Orlandini et al. [14] con-
sidered a directed walk model of homopolymer adsorption
at an impenetrable surface in which a force was applied
to pull the polymer off the surface. They calculated the
temperature dependence of the critical force for several
different directed walk models and noted that the force
was a monotone decreasing function of temperature for
some models, while for others the force had a maximum
value at some non-zero temperature. The difference is as-
sociated with the entropy of the ground state. For systems
with a degenerate ground state there is an entropy loss

a e-mail: orlandini@pd.infn.it

when the polymer is partially pulled off the surface and
this leads to a critical force which increases with increasing
temperature at low temperature.

Currently there is considerable interest in the statis-
tical mechanics of random copolymers. We shall be con-
cerned with random copolymers which have two types of
monomers, A and B. Since the sequence of monomers is
determined by a stochastic process but, once chosen, it
is then fixed, random copolymers are an interesting ex-
ample of quenched randomness (see for instance [15]).
In this paper we examine (i) the force required to pull
a random copolymer from a surface at which it is ad-
sorbed, (ii) the force required to pull a random copoly-
mer from a bulk phase (into which it is delocalized) into
a less favourable bulk phase, and (iii) the force required
to pull a random copolymer from an interface (at which
it is localized) into a bulk phase. We use very simple di-
rected walk models (related to Dyck paths and to Motzkin
paths) for the underlying configurational properties of the
polymer. Even for these models it is not always possible
to calculate quenched average properties analytically (see
for instance [12]) and we are obliged to resort to an ap-
proximation. The simplest approximation would be the
annealed approximation but it is known that this gives a
qualitatively incorrect phase diagram for localization [7].
Instead we use an approximation originally suggested by
Morita [16]. This can be regarded as a partial annealing
in which a Lagrange multiplier is used to ensure that the
mean fraction of vertices labelled A is fixed at the required
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value. It is known [7] that this gives a phase diagram for
the localization problem which is qualitatively correct, al-
though it differs quantitatively from the quenched values.
(For numerical estimates of the phase boundaries for a
self-avoiding walk model see James et al. [17]). We argue
that the Morita approximation gives the exact result for
the required force in some cases, and a bound in others.

2 Adsorption at an impenetrable surface

In this paper we focus on directed walks to model the con-
formational properties of single polymer chains. The sim-
plest such model of a polymer interacting with an impen-
etrable surface is a Dyck path. This is a directed walk on
the square lattice Z2 with edges which are vectors (1,±1).
If we set up the standard coordinate system so that a ver-
tex of the square lattice has integer coordinates (x1, x2),
then the walk starts at the origin, has no vertices with
x2 < 0, and has its final vertex in the line x2 = 0. If
we take the line x2 = 0 to represent the surface at which
adsorption can occur, Dyck paths have the disadvantage
that only alternate vertices can be in this line. Motzkin
paths (which differ from Dyck paths by having three kinds
of edges, (1,±1) and (1, 0)) do not have this disadvantage
since they can lie entirely in the line x2 = 0. We shall
analyse two models: one related to Dyck paths with only
alternate vertices randomly coloured, and one related to
Motzkin paths with all vertices randomly coloured. The
Motzkin path case is slightly simpler, and we discuss this
case first.

Suppose that cn is the number of Motzkin paths with
n edges. Then c1 = 1, c2 = 2, c3 = 4, c4 = 9, etc. Let M(z)
be the generating function of the numbers of Motzkin
paths, where z is conjugate to the number of edges, n,
so that

M(z) =
∑

n

cnzn. (1)

By factoring the Motzkin path at its first return to the
axis, M(z) satisfies the equation

M(z) = (1 + z + z2 + . . .)[1 + z2M(z)2] (2)

so that

M(z) =
1 − z −√

1 − 2z − 3z2

2z2
. (3)

We write cn(v) for the number of Motzkin paths with n
edges and v+1 vertices in the line x2 = 0. Suppose the n+1
vertices of the Motzkin path are numbered i = 0, 1, 2, . . . n.
For a model of homopolymer adsorption the energy of
the walk can be defined to be vε where ε is the energy
contribution for each vertex (i ≥ 1) in the line x2 = 0.
That is, the Hamiltonian is given by

H(ω) =
n∑

i=1

ε∆i(ω) (4)

where ω is a Motzkin path and ∆i(ω) = 1 if the ith vertex
of ω is at the surface (line x2 = 0) and zero otherwise. We

define x = exp[−ε/kBT ] where kB is Boltzmann’s con-
stant and T is the temperature. An attractive interaction
with the surface corresponds to ε < 0, i.e. to x > 1. The
variable x is conjugate to v and the corresponding gener-
ating function

M(x, z) =
∑

n

∑
ω

exp[−H(ω)/kBT ]zn

=
∑

n

n∑
v=0

cn(v)xvzn (5)

satisfies the equation [14]

M(x, z) = (1+xz +x2z2 + . . .)[1+xz2M(z)M(x, z)] (6)

so that

M(x, z) =
2

2 − x − xz + x
√

1 − 2z − 3z2
. (7)

M(x, z) has a square root singularity at z = z1 = 1/3 and
a pole, corresponding to a zero of the denominator, at

z = z2 =
1 − x +

√
x2 + 2x − 3
2x

. (8)

The singularity z1 corresponds to the desorbed phase and
the singularity z2 to the adsorbed phase. The two singu-
larities coallesce at x∗ = 3/2 which is the location of the
adsorption transition for the homopolymer.

We next examine the adsorption of a random copoly-
mer with two types of monomers, A and B, where only
A monomers interact with the adsorbing surface. For a
given sequence χ = {χi, i = 1, 2, . . . n} of monomers the
Hamiltonian can be written

H(ω|χ) =
n∑

i=1

ε∆i(ω)χi (9)

where χi = 1 if the ith monomer is A and zero if it is B.
Notice that the Hamiltonian depends both on the confor-
mation ω and on the monomer sequence χ.

In order to apply the Morita approximation we fol-
low the scheme used in [7]. We first need to count paths
keeping track of the number of vertices in x2 = 0 and the
number with x2 > 0. We define the generating function
F (u, w, z) where u is conjugate to the number of vertices
with x2 > 0, w is conjugate to v and z is conjugate to n.
A similar factorization scheme gives

F (u, w, z) =
1 + uwz2M(uz)F (u, w, z)

1 − wz
(10)

so that

F =
2u

2u − uwz − w + w
√

1 − 2uz − 3u2z2
. (11)

Suppose that the vertices of the Motzkin path are num-
bered i = 0, 1, 2, . . . n and suppose the vertices 1, 2, . . . n
are independently coloured A with probability p and B
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with probability 1 − p. We write χi = 1 if the ith vertex
is coloured A and χi = 0 if it is coloured B, and note
that the χi are independent random variables. We now
introduce a variable L which plays the role of a Lagrange
multiplier, to ensure that the mean fraction of vertices la-
belled A is fixed at p. In fact we shall give the details only
for the choice p = 1/2, but extension to other values of p
is straightforward. We write

〈Zn(x; L)〉 =

∑
χ

∑
ω∈Ωn

xv(ω|χ)L[2
∑

i χi−n]∑
χ 1

(12)

where ω is a Motzkin path in the set Ωn of Motzkin paths
with n edges, and v(ω|χ) is the number of A vertices in
x2 = 0 for walk ω given the colouring χ. This expression
can be rearranged to give

〈Zn(x; L)〉 = L−n
∑

ω∈Ωn

(
xL2 + 1

2

)v(ω) (
L2 + 1

2

)n−v(ω)

(13)
where v(ω) is the number of visits to x2 = 0 for walk ω. We
observe that the generating function F can be written as

F (u, w, z) =
∑
n≥0

zn
∑

ω∈Ωn

wv(ω)un−v(ω). (14)

Let
G(x, z; L) =

∑
n

〈Zn(x; L)〉zn (15)

be the generating function of the random copolymer in the
Morita approximation (with L yet to be determined). We
make the substitutions u → (L2 + 1)/2, w → (xL2 + 1)/2
and z → z/L in the expression for F , giving

G(x, z, L) = F ((L2 + 1)/2, (xL2 + 1)/2, z/L). (16)

The generating function G has two (positive real) singu-
larities. One is a square root singularity at

z = z1 =
2L

3(L2 + 1)
(17)

and the other, z = z2, comes from a zero of the denom-
inator of G. We now determine the value of L (which in
general depends on x) by choosing L such that〈∑

i

χi

〉
= n/2 (18)

in the n → ∞ limit. Ie, when z1 is dominant, we choose
L such that

L
∂(− log z1)

∂L
= 0 (19)

and this implies that L = L1 = 1 when z1 is dominant, and
z1 is then 1/3, corresponding to the desorbed phase. When
z2 is dominant we follow a similar procedure and find a
complicated expression for L, L = L2(x). Substituting this
into z2 gives the boundary of convergence as a function of
x in the adsorbed phase. The boundary of convergence

has a singular point at x = 2 where we have a switch from
z1 being dominant to z2 being dominant. This corresponds
to the adsorption transition in this approximation.

Next we include a force term f . The Hamiltonian (9)
generalizes now to

H(ω, f |χ) =
n∑

i=1

ε∆i(ω)χi − fh (20)

where h is the x2 coordinate of the final vertex of the
walk (final height). (Note that the case h = 0 corresponds
to Motzkin paths interacting with the surface). Suppose
that the number of such n-edge walks with v + 1 vertices
in x2 = 0, having final height equal to h, is bn(v, h). As in
the case of zero force, the Morita approximation can be
computed by defining the generating function

H(u, w, y, z) =
∑
v≥0

∑
h≥0

∑
n

bn(v, h)un−vwvyhzn. (21)

that also takes into account the number of vertices n − v
with x2 > 0. Let M1(y, z) = H(1, 1, y, z). By a factoriza-
tion argument M1 satisfies the relation

M1(y, z) = F (1, 1, z)[1 + yzM1(y, z)] (22)

so that

M1 =
2

1 − z − 2yz +
√

1 − 2z − 3z2
. (23)

Then

H(u, w, y, z) = F (u, w, z)[1 + uyzM1(y, uz)], (24)

and H can be written as

H =
2u(1 − uz +

√
1 − 2uz − 3u2z2

d1d2
(25)

where

d1 = w + uwz − 2u − w
√

1 − 2uz − 3u2z2 (26)

and

d2 = uz − 1 + 2uyz −
√

1 − 2uz − 3u2z2. (27)

Setting u = 1 and w = x gives the homopolymer
model. H(1, x, y, z) has a square root singularity but also
singularities corresponding to d1 = 0 and to d2 = 0. The
zero of d1 corresponds to the adsorbed phase and the zero
of d2 to the phase in which the applied force dominates.
Equating these two singularities gives the critical value of
y as a function of x and making the substitutions y = ef/T

and x = e1/T gives the temperature dependence of the
critical force, f . This reproduces the results in Figure 2
in [14].

To determine the force in the Morita approximation we
make the substitutions u → (L2 + 1)/2, w → (xL2 + 1)/2
and z → z/L in the expression for H . We then deter-
mine the singularities of H and identify the singularity
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Fig. 1. The force-temperature diagram for a Motzkin path
model of adsorption of a random copolymer at an impenetrable
surface, in the presence of a force. The calculation is carried
out in the Morita approximation. The lower three curves are
for p = 1/4 (bottom curve), p = 1/2 and p = 3/4. The top
curve is for the homopolymer.

z = zM
1 (L) (where d1 = 0) corresponding to the adsorbed

phase and the singularity z = zM
2 (L) (where d2 = 0)

corresponding to the phase where the force has caused
desorption. The value of L can be determined in each
of these situations (by finding the value of L such that
〈∑ χi〉 = n/2), and we find that

zM
2 = y/(1 + y + y2). (28)

Equating the two singularities gives the critical value of
y as a function of x. The above substitutions, to incorpo-
rate force and temperature, then give the results shown
in Figure 1 for the temperature dependence of the critical
force needed for desorption for p = 1/4 (bottom curve),
p = 1/2, p = 3/4 and for the homopolymer (p = 1, top
curve). The critical force at T = 0 is p and the force goes
to zero at T = 1/(log(2p + 1) − log(2p)), which is the lo-
cation of the adsorption transition in the absence of an
applied force. For p < 1 the critical force goes through
a maximum so the phase diagram is reentrant, unlike the
homopolymer phase diagram. We shall return to this point
in Section 4.

The Morita treatment is not only an approximation
to the quenched problem but gives a bound on the force
required for the quenched problem, as we now discuss. The
quenched average free energy with final vertex at x2 = h

is given by

κ̄(x, h) = lim
n→∞〈n−1 log Qn(x, h|χ)〉 (29)

where the partition function Qn(x, h|χ) is given by

Qn(x, h|χ) =
∑
{ω|h}

exp[−H(ω|χ)/kBT ]

=
∑
vA

bn(vA, h|χ)xvA (30)

where the first sum runs over the set {ω|h}, the set
of n-edge walks with their last vertex in x2 = h, and
bn(vA, h|χ) is the number of n-edge walks with final height
h and with vA A-vertices in x2 = 0, given χ.

Suppose that x ≤ 1. Then

tn(h) ≤ bn(0, h|χ) ≤ Qn(x, h|χ)

≤
∑
vA

bn(vA|χ) = bn(h), (31)

independent of χ, where bn(h) is the number of n-edge
walks with final height h and tn(h) is the number of n-
edge walks having final height h and with only the zeroth
vertex in x2 = 0. Now

bn(h) = tn+1(h + 1). (32)

Multiplying by yhzn and summing over n and h gives∑
n

∑
h

tn(h)yhzn ≤
∑

n

∑
h

Qn(x, h|χ)yhzn

≤
∑

n

∑
h

tn+1(h + 1)yhzn, (33)

so the large n behaviour of the generating function

Q̂n(x, y|χ) =
∑

h

Qn(x, h|χ)yh, (34)

when x ≤ 1, is determined by the boundary of convergence
of the generating function

T (y, z) =
∑

n

∑
h

tn(h)yhzn, (35)

i.e. by
z = zc = y/(1 + y + y2). (36)

This is precisely the value of zM
2 , the zero of d2, so the free

energy in the Morita approximation is exactly equal to the
quenched average free energy when x ≤ 1 and, since this
value is independent of x, for all values of x corresponding
to desorption. By a result due to Kühn [18], the quenched
average free energy in the adsorbed phase is bounded by
the Morita approximation to the free energy, i.e. by the
free energy related to the zero of d1. This implies that the
value of z1 for the quenched case, zQ

1 , is related to zM
1

by the inequality zQ
1 ≥ zM

1 . At fixed x, zM
2 decreases as

y increases and becomes equal to zQ
1 at a critical value
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y = yQ
c (x) and to zM

1 at a critical value y = yM
c (x). This

latter value determines the critical force in the Morita
approximation. Since zQ

1 ≥ zM
1 , yQ

c (x) ≤ yM
c (x). Hence

the force required for desorption in the quenched case is
less than or equal to that in the Morita approximation.

We next compare these results to those obtained for
a Dyck path model. If the vertices of the Dyck path are
labelled i = 0, 1, . . . n (with n even) then only the ver-
tices 0, 2, 4, . . . n can be in the line x2 = 0. If we colour
all vertices A or B then Orlandini et al. showed [7] that
the Morita approximation does very badly at low temper-
atures since the behaviour is dominated by the colouring
in which the even vertices are coloured A and the odd ver-
tices are coloured B (so that half the vertices have each
colour but the correlations are completely wrong). This
problem can be circumvented by colouring only even ver-
tices (i = 2, 4, . . . n) and leaving the remaining vertices
uncoloured (since the odd vertices can not lie in x2 = 0).

We first count Dyck paths. If D(z) is the generating
function of Dyck paths with z conjugate to the number of
edges n then D(z) satisfies the relation

D(z) = 1 + z2D(z)2 (37)

so that

D(z) =
1 −√

1 − 4z2

2z2
. (38)

We shall need to keep track of the number of Dyck paths
with a given number of odd vertices, so let Do(v, z) be the
corresponding generating function where v is conjugate to
the number of odd vertices. Then

Do(v, z) =
1 −√

1 − 4vz2

2vz2
. (39)

If De is the corresponding generating function where v is
conjugate to the number of even vertices (not counting
the zeroth vertex) then De = Do. Define the generating
function Fe(u, w, z) which counts Dyck paths where u is
conjugate to the number of even vertices with x2 > 0, w is
conjugate to the number of even vertices in x2 = 0 and
z is conjugate to the number of edges. Fe satisfies

Fe(u, w, z) = 1 + wz2Do(u, z)Fe(u, w, z) (40)

so that

Fe(u, w, z) =
2u

2u − w + w
√

1 − 4uz2
. (41)

Setting u = 1 and w = x gives the homopolymer generat-
ing function for this model, studied in [7]. For the Morita
approximation we make the substitutions u → (L2 +1)/2,
w → (xL2 +1)/2 and z → z/

√
L (recall that only half the

vertices are coloured). This is equivalent to the treatment
in [7] and gives an adsorption transition at x = xc = 3,
which is the same as for the annealed model. However, the
number of A vertices in x2 = 0, per edge of the Dyck path,
goes to 1/4 as the temperature goes to zero, as expected
for the quenched system.

To introduce a force we count the corresponding paths
with their last vertex in x2 = h. Let He(u, w, y, z) count
such paths where u is conjugate to the number of even ver-
tices with x2 > 0, w is conjugate to the number of even
vertices with x2 = 0, y is conjugate to h and z is conju-
gate to the number of edges, n, and let Ho(u, y, z) count
the paths where u is conjugate to the number of odd ver-
tices (each of which has x2 > 0). Let Fo(u, z) count Dyck
paths where u is conjugate to the number of odd vertices.
Then factorization arguments show that He(u, 1, y, z) and
Ho(u, y, z) are related by the simultaneous equations

He(u, 1, y, z) = Fe(u, 1, z)[1 + yzHo(u, y, z)], (42)

Ho(u, y, z) = Fo(u, z)[1 + uyzHe(u, 1, y, z)] (43)

and that

He(u, w, y, z) = Fe(u, w, z)[1 + yzHo(u, y, z)]. (44)

Noting that

Fo(u, z) = 1 + uz2De(u, z)Fo(u, z) (45)

we can solve the above equations for He(u, w, y, z). This
gives

He(u, w, y, z) =
2[(u + yz)

√
q0 + u − yz − 2uz2 − 2uyz]

q1q2
,

(46)
where q0 = 1 − 4uz2, q1 = 2u − w + w

√
1 − 4uz2 and

q2 = 1+
√

1 − 4uz2−2z2−2uy2z2. Making the above sub-
stitutions for the Morita approximation, identifying the
singularities of He, determining L in the different regimes,
and equating the two singularities coming from the de-
nominator of He, we find the x-dependence of y. With
the substitutions x = e1/T and y = ef/T this gives the
temperature dependence of the critical force, and this is
shown in Figure 2.

Note that the force goes to zero when T = 1/ log 3
(corresponding to xc = 3) and is equal to 1/4 when T = 0.
Note also that the force goes through a maximum value
for a non-zero value of the temperature, as found for the
Motzkin path model. An argument similar to that given
for the Motzkin path model establishes that the critical
force in the Morita approximation is an upper bound on
the required force for the quenched case.

3 Localization at an interface between
two immiscible liquids

In this section we consider two immiscible liquids α and β
and a random copolymer with two types of monomers A
and B which have different energy contributions in the two
liquid phases. Depending on the conditions the polymer
can be delocalized into one liquid phase or localized at
the interface between the two bulk phases. This problem
has been extensively studied in the absence of a force and
the form of the phase diagram (for a Dyck path model)
is well understood [12]. We examine two situations when
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Fig. 2. The force-temperature diagram for a Dyck path model
of adsorption of a random copolymer at an impenetrable sur-
face, in the presence of a force. The calculation is carried out
in the Morita approximation and p = 1/2.

a force is applied. We first consider the situation where
the copolymer is delocalized into one liquid phase and is
then pulled into the less favourable liquid phase. We also
consider the case where the copolymer is localized at the
interface and is then pulled into one of the bulk phases.

The model that we use is essentially that considered
in [7]. They considered bilateral Dyck paths, i.e. directed
walks with edges along the directions (1,±1), which start
at the origin and have their last vertex in the line x2 = 0.
The vertices are numbered i = 0, 1, 2, . . . n and vertices
1, 2, . . . n are independently coloured A with probability p
and B with probability 1 − p. We write χi = 1 if the ith
vertex is A and 0 if it is B. For a given a colouring se-
quence χ = {χ1, χ2, . . . χn} the Hamiltonian of the model
is given by

H(ω, |χ) =
n∑

i=1

(
εAχi∆

+
i (ω) + εB(1 − χi)∆−

i (ω)
)

(47)

where ∆+
i = 1 if the i’th vertex has positive x2-coordinate

and zero otherwise, and ∆−
i = 1 if the i’th vertex has

negative x2-coordinate and zero otherwise. εA and εB are
the energies associated with an A monomer being in the
α-phase (x2 > 0) and with a B monomer being in the
β-phase (x2 < 0). Let bn(vA, vB|χ) be the number of bi-
lateral Dyck paths, given a colouring sequence χ with vA

A-vertices with x2 > 0 (the α-phase) and vB B-vertices

with x2 < 0 (the β-phase). The partition function is

Zn(a, b|χ) =
∑
ω

exp [−H(ω, |χ)/kBT ] (48)

=
∑

vA,vB

bn(vA, vB|χ)avAbvB (49)

where a = exp[−εA/kBT ] and b = exp[−εB/kBT ].
In the Morita approximation one introduces an addi-

tional term, which plays the role of a Lagrange multiplier,
giving

〈Zn(a, b|χ)〉 =

∑
χ,vA,vB

bn(vA, vB|χ)avAbvBL[2
∑

i χi−n]∑
χ 1

(50)
which, when p = 1/2, can be rewritten as

〈Zn(a, b|χ)〉 = L−n
∑

ω∈Ωn

Uu(ω)V v(ω)Ww(ω) (51)

where u, v and w are the numbers of vertices with x2 > 0,
x2 < 0 and x2 = 0, respectively and U , V and W are
given by

U =
(

aL2 + 1
2

)
, V =

(
L2 + b

2

)
(52)

and

W =
(

L2 + 1
2

)
. (53)

We first count bilateral Dyck paths. Let B(a, b, c, z)
be the generating function of bilateral Dyck paths, where
a is conjugate to the number of vertices with x2 > 0, b
is conjugate to the number of vertices with x2 < 0 and
c is conjugate to the number of vertices with x2 = 0, not
counting the zeroth vertex. Also, z is conjugate to the
number of edges. The generating function B satisfies the
relation

B(a, b, c, z) = 1 + cz2B(a, b, c, z)[aD(az) + bD(bz)] (54)

so that

B(a, b, c, z) =
2ab

2ab − ac − bc + acb1 + bca1
, (55)

where a1 =
√

1 − 4a2z2 and b1 =
√

1 − 4b2z2. We can
construct the Morita approximation (for p = 1/2) by mak-
ing the substitutions a → (aL2 + 1)/2, b → (L2 + b)/2,
c → (L2 + 1)/2 and z → z/L. The generating function
B((aL2 +1)/2, (L2 +b)/2, (L2 +1)/2, z/L) has two square
root singularities

z1 =
L

aL2 + 1
(56)

and
z2 =

L

L2 + b
(57)

and a third singularity corresponding to a zero of the de-
nominator of B. The value of L required to ensure that
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〈∑i χi〉 = n/2 in the n → ∞ limit depends on the values
of a and b. When z1 is dominant, L = L1 = 1/

√
a, which

gives z1 = 1/(2
√

a). This corresponds to delocalization
into the α-phase, x2 > 0. Similarly, when z2 is dominant,
L = L2 =

√
b, giving z2 = 1/(2

√
b), which corresponds to

delocalization into the β-phase, x2 < 0.
To introduce a force we count the corresponding walks

which end in the line x2 = h. Let Q(a, b, c, y, z) be the
corresponding generating function where y is conjugate to
h and the other symbols have the same meaning as in the
definition of B. Then Q satisfies the relation

Q(a, b, c, y, z) = B(a, b, c, z)[1 + ayzD1(y, az)] (58)

where
D1(y, z) = D(z)[1 + yzD1(y, z)]. (59)

Hence

Q =
4a2bz

g1g2
(60)

where g1 = 2ab − ac − bc + ac
√

1 − 4b2z2 + bc
√

1 − 4a2z2

and g2 = 2az − y + y
√

1 − 4a2z2. We now make the usual
transformations to obtain the Morita approximation and
note that the two square root singularities of Q correspond
to delocalization into the two bulk phases (in the absence
of a force), the zero (z = z3) of g1 corresponds to localiza-
tion and the zero (z = z4) of g2 to the walk being pulled
into the phase x2 > 0 by the applied force. In each case we
determine the value of L by applying the Morita condition
that 〈∑i χi〉 = n/2. This gives

z1 =
1

2
√

a
z2 =

1
2
√

b
(61)

and
z4 =

y

(1 + y2)
√

a
, (62)

together with a complicated expression for z3. If we take
b > 1 and a < 1 so that z2 is the dominant singularity at
zero force, the walk is delocalized into x2 < 0. We then
look for the value of y corresponding to z2 = z4. Mak-
ing the substitutions a = e−ε/T , b = e1/T and y = ef/T

gives the temperature dependence of the critical force, f ,
at fixed ε. If ε > 0 the phase with x2 < 0 will be pre-
ferred at zero force, and application of the force will pull
the polymer from its preferred bulk phase into the less
favourable bulk phase. The force-temperature diagram is
given for several values of ε in Figure 3.

We can now ask how good the Morita approximation
will be. In this case it is exact. It is easy to see that z1

and z2 are the exact values for the quenched case when
the walk is in one or other of the two delocalized phases at
zero force. This follows, for instance, by arguments simi-
lar to those of Martin et al. [19], adapted to the directed
walk case. An argument similar to that given in Section 2
establishes that the Morita expression for z4 is the exact
value for the quenched case. Hence the Morita expression
for the force is exact.

If a, b < 1 it is possible that z3 will be dominant over
z1 and z2 and the walk will be localized at the interface.

0

0.5

1

1.5

2

2.5

3

Force

1 2 3 4 5
T

Fig. 3. The temperature dependence of the force required to
pull a random copolymer from a preferred bulk phase to a less
favourable bulk phase. The results are for a Dyck path model
with p = 1/2. The upper curve is for ε = 0.8, the middle curve
for ε = 0.5 and the lower curve is for ε = 0.2.

In this case we can think of pulling the polymer out of the
interface and into a bulk phase. To determine the criti-
cal value of the force we look for the value of y where
z3 = z4 and make the substitutions y = ef/T , a = e−ε/T

and b = e−1/T . The temperature dependence of the criti-
cal force is shown in Figure 4 for several values of ε > 0.
There are several features worth noting. For all values of
ε (0 < ε ≤ 1) the force increases with temperature at low
temperature. For 0 < ε < 1 the force goes through a max-
imum and goes to zero at some finite temperature, while
at ε = 1 the force is not zero for any finite temperature.
At fixed T the critical force increases as ε increases, since
increasing ε corresponds to a worsening of the solvent into
which the polymer is being pulled. We shall return to some
of these issues in the next section.

In this case an argument similar to that given in Sec-
tion 2 for adsorption establishes that the force calculated
in the Morita approximation is an upper bound on the
critical force for the quenched case.

4 Discussion

We have considered some directed walk models of a ran-
dom copolymer subject to a force. Because of the difficul-
ties of treating the quenched random case we have carried
out the calculations in the Morita approximation which
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Fig. 4. The temperature dependence of the force required to
pull a random copolymer localized at an interface into a bulk
phase. The results are for a Dyck path model with p = 1/2.
The top curve is for ε = 1 and the others are for ε = 0.9, 0.8,
0.7, 0.6 and 0.5.

can be considered as a partial annealing which ensures
the correct frequency of occurence of the comonomers, al-
though higher moments are not guaranteed. The approx-
imation is known to give qualitatively correct results for
the phase diagram of random copolymer localization with-
out an applied force [7]. The phase diagram is shown in
Figure 5.

The situations that we have considered are

1. a random copolymer adsorbed at an impenetrable sur-
face (where only one comonomer interacts with the
surface), where the force can cause desorption,

2. a random copolymer which is dissolved in one bulk
phase and is pulled into a second (immiscible) bulk
phase, and

3. a random copolymer localized at the interface between
two immiscible bulk phases, which is pulled into one
of the bulk phases.

In each case we considered a copolymer with two types of
monomers (A and B) where the monomers are distributed
independently with the probability that a monomer is A
being p.

In the first case (random copolymer adsorption) we
considered two models (related to Motzkin paths and to
Dyck paths). We calculated the temperature dependence
of the critical force required to desorb the copolymer. For
0 < p < 1 the force has a maximum as the temperature

-3
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1
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3

log(b)

-3 -2 -1 1 2 3

log(a)

Fig. 5. The phase diagram for localization in the Morita ap-
proximation when p = 1/2. The polymer is delocalized into the
β-phase throughout the second quadrant and into the α-phase
throughout the fourth quadrant. There is a region of the third
quadrant where the polymer has a positive density of vertices
in the interface and is therefore localized.

increases (unlike the homopolymer case, where the force
is monotone decreasing in temperature). This seems to be
associated with the degenerate ground states of the models
(at T = 0, 0 < p < 1). If p < 1, at T = 0 all the A vertices
of a Motzkin path will be in the surface but B vertices
can be in or out of the surface. There are at least 2(1−p)n

such ground states so the intensive (reduced) entropy is at
least (1 − p) log 2. Hence the force-temperature curve will
have a slope (at T = 0) at least as large as (1−p) log 2. In
Figure 1 it is clear that this slope at T = 0 decreases as
p increases, as expected from the above rough argument.
The value of the critical force at T = 0 for the Motzkin
path model is p since the energy to be overcome is pn.
For the Dyck path model the corresponding value is p/2
since only alternate vertices can be in the surface. For
these models of random copolymer adsorption we showed
that the critical force calculated in the Morita approxi-
mation is an upper bound on the force required for the
quenched problem. Note that Figures 1 and 2 show that,
within the Morita approximation, the force-temperature
diagrams for Motzkin and Dyck path models are qualita-
tively similar. This could be understood by noticing that
Dyck and Motzkin path models can be seen as two special
cases of the same SOS model introduced some years ago
to study the effect of disorder on two-dimensional wet-
ting [20].

We also considered the situation where we have two
immiscible solvents where the two types of comonomers
have different energies of interaction with the two solvents.
For this situation we modelled the polymer as a Dyck
path. If the polymer is delocalized into one solvent (β,
say) in the absence of a force and is pulled into the less
favourable solvent (α, say), the required force is monotone
increasing in the temperature. The critical force increases
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as the quality of the α solvent decreases. For this case we
showed that the Morita approximation is in fact exact.

If a, b < 1 there is a region of the phase diagram (see
Fig. 5) where the copolymer is localized at the interface
(in the sense that the path crosses the interface a posi-
tive density of times). If we start at a point in this region
and increase the temperature, we are following a ray in the
third quadrant of the (log a, log b)-plane which ends at the
origin (at infinite temperature). If the ray has unit slope
(corresponding to ε = 1 in our notation) the ray doesn’t
cross the phase boundary at any finite temperature, so the
critical force is positive at every finite temperature. If the
ray has any other slope then it crosses a phase boundary
and if the slope is greater than unity (corresponding to
0 < ε < 1 in our notation) it crosses the phase boundary
corresponding to delocalization into the α-phase. Hence,
the critical force goes to zero at the temperature corre-
sponding to the intersection point of the ray and this phase
boundary. For this third case we showed that the Morita
approximation gives a bound on the critical force for the
quenched problem.

Finally we try to understand the positive slope of the
force at low temperatures (in Fig. 4) by a qualitative
argument. Recall that we are interested in the third
quadrant where A vertices are repelled from the α-phase
and B vertices are repelled from the β-phase. There is
no energetic disadvantage for A (B) vertices to be in
the interface (x2 = 0) or in the β-phase (α-phase). For
any colouring sequence χ it is possible to construct a
Dyck path such that no A (B) vertices will be in the
α-phase (β-phase), by confining the vertices of the Dyck
path to the three lines x2 = −1, 0, 1. These will be
ground state configurations, although other ground state
configurations where the path is not confined to these
three lines might also exist. For some colouring sequences
the ground state will be unique while for others it will
be degenerate. Consider a colouring χ which contains
the sequence χ1 = BABBBAB, starting at an odd
vertex. We write the vectors (1, 1) as u and (1,−1) as
v. With the first vertex of this subwalk in x2 = 1 the
remainder of the subwalk can be vuuvvu or vuvuvu.
I.e. there are two possible subwalks with no A vertices
in the α-phase and no B vertices in the β-phase. Since
this colouring sequence (starting at an odd vertex) will
occur on all except exponentially few sufficiently long
walks at least ε1n times, for some ε1 > 0, there are at
least 2ε1n possible ground states. Hence the entropy (per
vertex) of the ground state is at least ε1 log 2. (Of course,

it is much larger than this since a similar argument can
be made for other colouring subsequences.) This means
that some entropy is lost when the walk is pulled off the
surface so the force has positive slope at T = 0.

A problem closely related to the ones studied in this
paper concerns the influence of disorder in the mechanical
denaturation of DNA [21]. It would be interesting to see
how the Morita approximation could be applied for that
case.
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18. R. Kühn, Z. Phys. B 100, 231 (1996)
19. R. Martin, M.S. Causo, S.G. Whittington, J. Phys. A 33,

7903 (2000)
20. G. Forgacs, J.M. Luck, Th.M. Nieuwenhuizen, H. Orland,

J. Stat. Phys. 51, 29 (1988)
21. D.K. Lubensky, D.R. Nelson, Phys. Rev. E 65, 031917

(2002)


